Литосферные плиты
Содержание:
- «Литосфера. Земная кора»
- Рельеф. Движущие силы рельефообразования
- Тектоника плит и генерация магмы
- Горизонтальные смещения
- Описание платформ
- Расширение возможностей для исследования
- Движение литосферы Земли.
- Карта литосферных плит мира
- Формы тектонических структур
- ↑ Интересные факты
- Литосферные плиты
- Движение тектонических плит
- Мантия
- Что мы узнали?
- Литосферные плиты и их движение. Океаническая и континентальная кора Земли
«Литосфера. Земная кора»
Литосфера. Земная кора. 4,5 млрд. лет назад, Земля представляла собой шар, состоящий из одних газов. Постепенно тяжелые металлы, такие как железо и никель, опускались к центру и уплотнялись. Легкие породы и минералы всплывали на поверхность, охлаждались и отвердевали.
Внутреннее строение Земли.
Принято делить тело Земли на три основные части – литосферу (земную кору), мантию и ядро.
Ядро — центр Земли, средний радиус которого около 3500 км (16,2 % объема Земли). Как предполагают, состоит из железа с примесью кремния и никеля. Наружная часть ядра находится в расплавленном состоянии (5000 °С), внутренняя, по-видимому, твердая (субъядро). Перемещение вещества в ядре создает на Земле магнитное поле, защищающее планету от космического излучения.
Ядро сменяется мантией, которая простирается почти на 3000 км (83 % объема Земли). Считают, что она твердая, в то же время пластичная и раскаленная. Мантия состоит из трех слоев: слоя Голицына, слоя Гуттенберга и субстрата. Верхняя часть мантии, называемая магмой, содержит слой с пониженной вязкостью, плотностью и твердостью — астеносферу, на которой уравновешиваются участки земной поверхности. Граница между мантией и ядром называется слоем Гуттенберга.
Литосфера
Литосфера – верхняя оболочка «твердой» Земли, включающая земную кору и верхнюю часть подстилающей ее верхней мантии Земли.
Земная кора – верхняя оболочка «твердой» Земли. Мощность земной коры от 5 км (под океанами) до 75 км (под материками). Земная кора неоднородна. В ней различают 3 слоя – осадочный, гранитный, базальтовый. Гранитный и базальтовый слои названы так потому, что в них распространены горные породы, похожие по физическим свойствам на гранит и базальт.
Состав земной коры: кислород (49 %), кремний (26 %), алюминий (7 %), железо (5 %), кальций (4 %); самые распространенные минералы — полевой шпат и кварц. Граница между земной корой и мантией называется поверхностью Мохо.
Различают континентальную и океаническую земную кору. Океаническая отличается от континентальной (материковой) отсутствием гранитного слоя и значительно меньшей мощностью (от 5 до 10 км). Толщина континентальной коры на равнинах 35—45 км, в горах 70—80 км. На границе материков и океанов, в районах островов толщина земной коры составляет 15—30 км, гранитный слой выклинивается.
Положение слоев в континентальной коре свидетельствует о разном времени ее образования. Базальтовый слой является самым древним, моложе его – гранитный, а самый молодой – верхний, осадочный, развивающийся и в настоящее время. Каждый слой коры формировался в течение длительного отрезка геологического времени.
Литосферные плиты
Земная кора находится в постоянном движении. Первым гипотезу о дрейфе материков (т.е. горизонтальном движении земной коры) выдвинул в начале ХХ века А. Вегенер. На ее основе создана теория литосферных плит. Согласно этой теории, литосфера не является монолитом, а состоит из семи крупных и нескольких более мелких плит, «плавающих» на астеносфере. Пограничные области между литосферными плитами называют сейсмическими поясами — это самые «беспокойные» области планеты.
Земная кора разделяется на устойчивые и подвижные участки.
Устойчивые участки земной коры — платформы — образуются на месте геосинклиналей, потерявших подвижность. Платформа состоит из кристаллического фундамента и осадочного чехла. В зависимости от возраста фундамента выделяют древние (докембрийские) и молодые (палеозойские, мезозойские) платформы. В основании всех материков лежат древние платформы.
Подвижные, сильно расчлененные участки земной поверхности называются геосинклиналями (складчатыми областями). В их развитии выделяют два этапа: на первом этапе земная кора испытывает опускания, происходит накопление осадочных горных пород и их метаморфизация. Затем начинается поднятие земной коры, горные породы сминаются в складки. На Земле было несколько эпох интенсивных горообразований: байкальская, каледонская, герцинская, мезозойская, кайнозойская. В соответствии с этим выделяют различные области складчатости.
Распространение и возраст платформ и геосинклиналей показывается на тектонической карте (карте строения земной коры).
Конспект урока «Литосфера. Земная кора». Следующая тема «Горные породы».
Рельеф. Движущие силы рельефообразования
Рельеф – эта форма постоянно меняющейся поверхности Земли или совокупность неровностей Земли, различного происхождения, размера и возраста. Трансформация земного рельефа происходит под влиянием внешних и внутренних сил. Они взаимосвязаны между собой. Эндогенные (внутренние) процессы образуют неровности поверхности, а экзогенные (внешние) путем разрушения выравнивают рельеф.
Внутренние процессы рельефообразования
Основной источник энергии эндогенных процессов – это энергия в недрах Земли. Наибольшее влияние среди эндогенных сил на рельефообразование оказывают:
- тектонические движения;
- землетрясения;
- вулканизм.
Тектонические движения–движение коры Земли под влиянием сил мантии.
Землетрясения–подземные толчки, приводящие к колебанию поверхности Земли. Ежедневно возникают в разных уголках планеты. Чаще всего на океанском дне и сейсмических поясах.
В зависимости от причин возникновения толчков, землетрясения бывают:
- Тектонические землетрясения. Тектонические плиты постоянно находятся в движении. Сталкиваясь друг с другом, они порождают землетрясения. Даже минимальная энергия, освобождаемая при сдвиге горных пород, деформирует земную поверхность и несет разрушения.
Техногенные землетрясения возникают путем губительного воздействия человечества на планету. Объекты добычи ископаемых, шахты и карьеры, большие искусственные водоемы – зоны повышенного количества земных толчков.
Вулканическиеземлетрясения происходят под давлением лавных потоков на поверхность Земли. Амплитуда толчков небольшая, но длительность явления достигает 2 недель. Часто предшествует извержению.
Обвальные землетрясенияобразуются путем размывания подземными водами земной тверди и последующим появлением земляных пустот. Для этих землетрясений характерны оползни и обвалы.
Искусственные землетрясения также связаны с деятельностью человека. Например, запуск спутника или испытание ядерного оружия могут спровоцировать подземные толчки.
Подводные землетрясения. Смещение плит в водах Мирового океана провоцирует сдвиг океанической коры, отягощенный возникновением гигантских волн- цунами.
Место столкновение плит и непосредственный центр землетрясения называется его очагом ( гипоцентром). Место над очагом на поверхности земли – эпицентр. Именно в этом районе и происходят самые сильные разрушения.
Точно предугадать начало и место землетрясений невозможно. Сейсмология — наука, изучающая очаги землетрясений, ставит перед собой задачу примерного выяснения района и силы природного явления. Все данные регистрируются специальными приборами – сейсмографами. Мощность землетрясений определяют по 10 – бальной шкале Рихтера. За расчет единицы берется амплитуда колебательных волн. Чем больше ее показатель, тем сильнее будут толчки.
Вулканизм – природное явление, связанное с перемещением жидкой магмы к земной поверхности и излитием в виде лавы. Магма (расплавленное вещество) отличается от лавы тем, что содержит летучие вещества, которые на поверхности уходят в атмосферу. Извергаемые вещества формируют конусообразную гору – вулкан. Они могут быть действующими, потухшими и уснувшими, а также наземными и подводными. Расположены вулканы в основном в сейсмических зонах:
- Тихоокеанский сейсмический пояс окольцовывает Тихий океан.
Средиземноморский сейсмический пояс имеетмного потухших вулканов — в горах Кавказа.
Атлантический пояс представлен наземными и действующими подводными вулканами.
Внешние процессы рельефообразования
Основной источник энергии экзогенных процессов – это энергия на поверхности от солнечных лучей. Наибольшее влияние среди эндогенных сил на рельефообразование оказывают:
- выветривание;
- деятельность вод;
- деятельность ветра;
- деятельность ледников.
Главным внешним процессом является выветривание — процесс разрушения горных пород. Влияет на рыхлость пород и подготавливает их к перемещению.
Деятельность вод. Движение вод преобразуют рельеф до неузнаваемости. Они способны прорезать долины, каньоны и ущелья. Формируют овражно-балочный вид рельефа.
Изменяется рельеф и путем переноса большого количества песчаных частиц. Появление барханов и песчаных холмов заслуга деятельности ветра.
Деятельность ледников разнообразна: от сглаживания скал до образования водных холмов и гряд. Таяние ледников формирует песчаные равнины и ледниковые озера.
Тектоника плит и генерация магмы
О связи между землетрясениями и вулканической активностью, наверное, люди подозревали с самых ранних времен человечества. Но именно теория тектоники плит позволяет объяснить более глубокую связь между этими двумя явлениями и объяснить их оба в единой объединяющей теории.
Плавление мантии
Большая часть магмы (расплавленных пород) происходят непосредственно из мантии. Твердая кора, как правило, слишком холодна, чтобы производить такие расплавы. Только если она эта кора нагревается, например, магмой, то небольшое её количество все же может расплавиться.
Давление удерживает (большую часть) мантии в твердом состоянии
Внутри горячей мантии присутствует достаточно высокое давление. (Частичное) плавление мантийных пород возможно только в том случае, если тенденция температуры к плавлению породы превышает противоположное влияние давления. Такие условия могут достигаться только в самых верхних слоях мантии, под литосферой, в зоне, называемой астеносферой (греч. «asthenos” – слабый). Астеносфера лежит на глубине от 100 км до 35 км и состоит из горячего, «слабого» материала, который может содержать несколько процентов частичных расплавов или находиться вблизи точки образования расплавов.
Чтобы образовался вулкан, магма должна подняться на поверхность
Нормальное количество расплава, которое может присутствовать в астеносфере под нормальной пластиной обычно слишком мало для образования вулканов на поверхности (иначе вулканы были бы повсюду) и находится в равновесии с окружающей средой. Для образования вулканов на поверхности необходимы не только большие объемы расплава, но и подходящие проходы в виде трещин в жесткой коре. Внутри плит такие условия обычно не создаются. С другой стороны, существуют 3(4) различных тектонических среды, где магма образуется в больших количествах и где происходят вулканы:
- на дивергентных окраинах: на срединно-океанических хребтах и в континентальных рифтовых долинах
- на конвергентных окраинах: зонах субдукции
- в середине плит: возникает внутриплитный вулканизм
Тектонические плиты Земли
Модель тектоники плит предполагает, что верхний, жесткий слой Земли (литосфера) разбит на несколько больших и маленьких жестких плит, которые находятся в постоянном движении относительно друг друга.
Существует 7 или 8 основных плит (в зависимости от их определения) и много второстепенных плит (часто называемых микропластинками). Там, где встречаются пластины, их движение по отношению друг с другом определяет тип границы: сходящаяся, расходящаяся или трансформная.
Вдоль этих границ плит происходят землетрясения, вулканическая активность, горообразование и образование океанических траншей. Поперечное относительное перемещение пластин обычно колеблется от нуля до 100 мм в год.
Тектонические плиты, землетрясения и вулканизм
Как видно из рисунка, большинство вулканов и землетрясений расположены на границах плит, причем некоторые пограничные зоны особенно активны. Хорошим примером являются границы Тихоокеанской плиты, где происходит больше вулканов и землетрясений, чем во всем остальном мире вместе взятых. Из-за этого его часто называют «Огненным кольцом«.
Горизонтальные смещения
При образовании поднятий в процессе поступления аномальной мантии к коре на континентах и океанах происходит увеличение потенциальной энергии, запасенной в верхних слоях планеты. Для сброса излишков вещества стремятся разойтись в стороны. В итоге формируются добавочные напряжения. С ними связаны разные типы движения плит и коры.
Разрастание океанического дна и плавание материков являются следствием одновременного расширения хребтов и погружения платформы в мантию. Под первыми располагаются крупные массы из сильно нагретого аномального вещества. В осевой части этих хребтов последнее находится непосредственно под корой. Литосфера здесь обладает значительно меньшей мощностью. Аномальная мантия при этом растекается в участке повышенного давления — в обе стороны из-под хребта. Вместе с этим она достаточно легко разрывает кору океана. Расщелина наполняется базальтовой магмой. Она, в свою очередь, выплавляется из аномальной мантии. В процессе застывания магмы формируется новая Так происходит разрастание дна.
Описание платформ
Платформа – это практически неподвижные части земной коры, которые прошли очень долгий этап геологического формирования. Их возраст определяют по этапу образования кристаллического фундамента (гранитного и базальтового слоёв). Древние или докембрийские платформы на карте всегда находятся в центре континента, молодые – или на краю материка, или между докембрийскими платформами.
Горно-складчатая область
Горно-складчатая область была сформирована во время столкновения тектонических плит, что расположены на материке. Если горные хребты были сформированы недавно, возле них фиксируется повышенная сейсмическая активность и все они расположены по краям литосферных плит (более молодые массивы относятся к альпийскому и киммерийскому этапу образования). Более старые области, относящиеся к древней, палеозойской складчатости, могут располагаться как с краю материка, например, в Северной Америке и Австралии, так и по центру – в Евразии.
Интересно, что возраст горно-складчатых областей учёные устанавливают по самым молодым складкам. Поскольку горообразование происходит беспрестанно, это даёт возможность определить лишь временные рамки этапов развития нашей Земли. Например, наличие горного хребта посреди тектонической плиты свидетельствует о том, что когда-то здесь проходила граница.
Расширение возможностей для исследования
Появление сейсмотомографии обусловило переход этой науки на качественно новый уровень. В середине восьмидесятых годов прошлого века глубинная геодинамика стала самым перспективным и молодым направлением из всех существовавших наук о Земле. Однако решение новых задач осуществлялось с использованием не только сейсмотомографии. На помощь пришли и прочие науки. К ним, в частности, относят экспериментальную минералогию.
Благодаря наличию нового оборудования появилась возможность изучать поведение веществ при температурах и давлениях, соответствующих максимальным на глубинах мантии. Также в исследованиях использовались методы изотопной геохимии. Эта наука изучает, в частности, изотопный баланс редких элементов, а также благородных газов в различных земных оболочках. При этом показатели сравниваются с метеоритными данными. Применяются методы геомагнетизма, с помощью которых ученые пытаются раскрыть причины и механизм инверсий в магнитном поле.
Движение литосферы Земли.
Литосферные плиты постоянно движутся относительно друг друга со скоростью до нескольких десятков сантиметров в год. Данный факт был зафиксирован фотоснимками, сделанными с искусственных спутников Земли. В настоящее время известно, что Американская литосферная плита движется навстречу Тихоокеанской, а Евразийская сближается с Африканской, Индо-Австралийской, а также с Тихоокеанской. Американская и Африканская литосферные плиты медленно расходятся.
Литосферные плиты – основные составляющие литосферы – лежат на пластичном слое верхней мантии – астеносфере. Именно ей принадлежит главная роль в движении земной коры. Вещество астеносферы в результате тепловой конвекции (передачи тепла в виде струй и потоков) медленно «течет», увлекая за собой блоки литосферы и вызывая их горизонтальные перемещения. Если же вещество астеносферы поднимается или опускается, это приводит к вертикальному движению земной коры. Скорость вертикального движения литосферы гораздо меньше горизонтального – всего до 1-2 десятков миллиметров в год.
При вертикальном движении литосферы над восходящими ветвями конвективных течений астеносферы происходят разрывы литосферных плит и образуются разломы. В разломы устремляется лава и, остывая, наполняет пустые полости толщами магматических пород. Но затем нарастающее растяжение движущихся литосферных плит снова приводит к разлому. Так, постепенно нарастая в местах разломов, литосферные плиты расходятся в разные стороны. Эта полоса горизонтального расхождения плит получила название рифтовой зоны. По мере удаления от рифтовой зоны литосфера остывает, тяжелеет, утолщается и, как следствие, проседает глубже в мантию, образуя области понижения рельефа.
Зоны разломов наблюдаются как на суше, так и в океане. Самый крупный материковый разлом длиной более 4000 км и шириной 80-120 км находится в Африке. На склонах разлома находится большое количество действующих и спящих .
В это время на противоположной от разлома границе происходит столкновение литосферных плит. Столкновение это может протекать по-разному в зависимости от видов сталкивающихся плит.
- Если сталкиваются океаническая и материковая плиты, то первая погружается под вторую. При этом возникают глубоководные желоба, островные дуги (Японские острова) или горные хребты (Анды).
- Если сталкиваются две материковые литосферные плиты, то на этом месте края плит сминаются в складки, что ведет к образованию вулканов и горных хребтов. Таким образом на границе Евразийской и Индо-Австралийской плиты возникли Гималаи. Вообще, если в центре материка имеются горы, это значит, что когда-то это было местом столкновения двух спаявшихся в одну литосферных плит.
Таким образом, земная кора находится в постоянном движении. В её необратимом развитии подвижные области — геосинклинали — превращаются путём длительных преобразований в относительно спокойные области — платформы.
Карта литосферных плит мира
За те миллиарды лет, в течение которых осуществлялось движение плит, неоднократно происходило их слияние и разделение. На силу и энергичность движения материков большое влияние оказывает внутренняя температура Земли. С её повышением увеличивается скорость движения плит.
Сколько плит и каким образом на сегодняшний день располагаются литосферные плиты на карте мира? Их границы очень условны. Сейчас насчитывается 8 важнейших плит. Они покрывают 90% всей территории планеты:
- Австралийская;
- Антарктическая;
- Африканская;
- Евразийская;
- Индостанская;
- Тихоокеанская;
- Северо-Американская;
- Южно-Американская.
Ученые постоянно проводят осмотр и анализ океанического дна, и исследуют разломы. Открывают новые плиты и корректируют линии старых.
Формы тектонических структур
Крупные природные комплексы представлены в виде единой геоструктурной области большой площади (складчатая система или платформа). Территория России расположена на крупных литосферных структурах: платформах, складчатых поясах, щитах. Любое образование отображено в рельефе. В современном рельефе все они представлены разнообразными формами: равнинами, низменностями и возвышенностями, горными массивами.
Горы расположены по окраинам платформ в зонах складчатости. Формируются при конвергенции литосферных плит. Сибирская платформа с востока и юга обрамлена дугами Саянских гор и хребтов, которые зародились в разное время в складчатых областях.
Кавказские горы, крайние цепи гор восточной части России, относительно молодые. Их характерная черта – острые гребни хребтов, высокие пики, узкие прорези долин.
О тектонической активности складчатой области свидетельствуют наблюдаемые извержения вулканов и землетрясения. Основополагающим принципом разделения горно-складчатых областей является возраст складчатости, который можно установить по возрасту смятых в складки самых молодых слоев.
Все существующие горно-складчатые области по тектоническому строению можно разделить на складчатые и складчато-глыбовые.
Наиболее древними докембрийскими платформами являются Русская и Сибирская платформы, сформировавшиеся в архее и протерозое. К более молодым платформам относятся: Западно-Сибирская, Скифская и Печорская.
К плитам платформ приурочены равнины разной площади и высоты. Здесь складкообразовательные процессы закончились давно. Равнины занимают ¾ территории России, что обусловлено наличием крупных платформ.
Равнины расположены на следующих платформах:
- Сибирская платформа — Среднесибирское плоскогорье,
- Русская (Восточно-Европейская) платформа — Восточно-Европейская равнина,
- Западно-Сибирская плита — Западно-Сибирская низменность,
- Скифская плита – равнины Предкавказья,
- Печорская плита — Печорская низменность.
В основании платформ находится жесткий фундамент, в состав которого магматические и метаморфизированные породы докембрийского периода. Фундамент платформ покрыт горизонтально залегающими осадочными породами. Исключение составляет Сибирская платформа, на которой значительные площади покрыты сибирскими траппами (вулканическими породами).
В пределах платформ выделяют щиты: Балтийский щит расположен на Восточно-Европейской платформе; Алданский и Анабарский щиты расположены на Сибирской платформе.
На Восточно-Европейской платформе находится Русская плита, а на Сибирской платформе – Лено-Енисейская плита.
Рисунок 2. Литосферные плиты и разломы на территории России. Автор24 — интернет-биржа студенческих работ
↑ Интересные факты
- Литосфера возникла в процессе того, что постепенно освобождались вещества из мантии Земли. Подобные явления еще иногда наблюдаются на дне океана, в результате чего появляются газы и немного воды.
- Мощность литосферы меняется в зависимости от климата и природных условий. Так, в холодных регионах, она достигает максимального значения, а в теплых – остается на минимальных отметках. Самый верхний слой литосферы обладает упругостью, а нижний – очень пластичный. Твердая оболочка Земли постоянно находится под влиянием воды и воздуха, что вызывает выветривание. Оно бывает физическое, когда порода распадается, а ее состав не меняется; а также химическое – появляются новые вещества.
- Из-за того, что литосфера постоянно двигается, меняется облик планеты, ее рельеф, структура равнин, гор, низкогорья.Человек постоянно оказывает влияние на литосферу, и это участие не всегда полезное, вследствие чего происходит серьезное загрязнение оболочки. В первую очередь, это связано с накоплением мусора, применением ядов и удобрений, что меняет состав грунтов, почвы, живых существ.
Литосферные плиты
Еще одна черта, которая отличает Землю от других планет — это разнообразие на ней разнотипных ландшафтов. Конечно, свою невероятно большую роль сыграли воздух и вода, о чем мы расскажем немного позже. Но даже основные формы планетарного ландшафта нашей планеты отличаются от той же Луны. Моря и горы нашего спутника — это котлованы от бомбардировки метеоритами. А на Земле они образовались в результате сотен и тысяч миллионов лет движения литосферных плит.
Смещения литосферы
О плитах вы уже наверняка слышали — это громадные устойчивые фрагменты литосферы, которые дрейфуют по текучей астеносфере, словно битый лед по реке. Однако между литосферой и льдом есть два главных отличия:
- Прорехи между плитами небольшие, и быстро затягиваются за счет извергающегося с них расплавленного вещества, а сами плиты не разрушаются от столкновений.
- В отличие от воды, в мантии отсутствует постоянное течение, которое могло бы задавать постоянное направление движения материкам.
Так, движущей силой дрейфа литосферных плит является конвекция астеносферы, основной части мантии — более горячие потоки от земного ядра поднимаются к поверхности, когда холодные опускаются обратно вниз. Учитывая то, что материки различаются в размерах, и рельеф их нижней стороны зеркально отражает неровности верхней, движутся они также неравномерно и непостоянно.
Динамическая схема Земли. Смотреть в полном размере.
Главные плиты
За миллиарды лет движения литосферных плит они неоднократно сливались в суперконтиненты, после чего снова разделялись. В ближайшем будущем, через 200– 300 миллионов лет, тоже ожидается образование суперконтинента под именем Пангея Ультима. Рекомендуем посмотреть видео в конце статьи — там наглядно показано, как мигрировали литосферные плиты за последние несколько сотен миллионов лет. Кроме того, силу и активность движения материков определяет внутренний нагрев Земли — чем он выше, тем сильнее расширяется планета, и тем быстрее и свободнее движутся литосферные плиты. Однако с начала истории Земли ее температура и радиус постепенно снижаются.
Интересный факт — дрейф плит и геологическая активность не обязательно должны питаться от внутреннего самонагрева планеты. К примеру, Ио, спутник Юпитера, обладает множеством активных вулканов. Но энергию для этого дает не ядро спутника, а гравитационное трение с Юпитером, из-за которого недра Ио разогреваются.
Границы литосферных плит весьма условны — одни части литосферы тонут под другими, а некоторые, как Тихоокеанская плита, вообще скрыты под водой. Геологи сегодня насчитывают 8 основных плит, которые покрывают 90 процентов всей площади Земли:
- Австралийская
- Антарктическая
- Африканская
- Евразийская
- Индостанская
- Тихоокеанская
- Северо-Американская
- Южно-Американская
Карта литосферных плит
Такое разделение появилось недавно — так, Евразийская плита еще 350 миллионов лет назад состояла из отдельных частей, во время слияния которых образовались Уральские горы, одни из самых древних на Земле. Ученые по сей день продолжают исследование разломов и дна океанов, открывая новые плиты и уточняя границы старых.
Движение тектонических плит
Литосферные плиты, соединяясь и разъединяясь, всё время изменяют свои очертания. Это даёт возможность учёным выдвигать теорию о том, что около 200 млн. лет назад литосфера имела лишь Пангею — один-единственный континент, впоследствии расколовшийся на части, которые начали постепенно отодвигаться друг от друга на очень маленькой скорости (в среднем около семи сантиметров в год).
Когда происходит столкновение океанической и континентальной плит, край океанической коры погружается под материковую, при этом с другой стороны океанической плиты её граница расходится с соседствующей с ней плитой. Граница, вдоль которой происходит движение литосфер, называется зоной субдукции, где выделяют верхние и погружающиеся края плиты. Интересно, что плита, погружаясь в мантию, начинает плавиться при сдавливании верхней части земной коры, в результате чего образуются горы, а если к тому же прорывается магма – то и вулканы.
В местах, где тектонические плиты соприкасаются друг с другом, расположены зоны максимальной вулканической и сейсмической активности: во время движения и столкновения литосферы, земная кора разрушается, а когда они расходятся, образуются разломы и впадины (литосфера и рельеф Земли связаны друг с другом). Это является причиной того, что вдоль краёв тектонических плит расположены наиболее крупные формы рельефа Земли – горные хребты с активными вулканами и глубоководные желоба.
Рельеф
Не удивляет, что движение литосфер непосредственно влияет на внешний вид нашей планеты, а разнообразие рельефа Земли поражает (рельеф – это совокупность неровностей на земной поверхности, которые находятся над уровнем моря на разной высоте, а потому основные формы рельефа Земли условно делят на выпуклые (материки, горы) и вогнутые – океаны, речные долины, ущелья).
Стоит заметить, что суша занимает только 29% нашей планеты (149 млн. км2), а литосфера и рельеф Земли состоят в основном из равнин, гор и низкогорья. Что касается океана, то его средняя глубина составляет немногим меньше четырёх километров, а литосфера и рельеф Земли в океане состоят из материковой отмели, берегового склона, океанического ложа и абиссальных или глубоководных желобов. Большая часть океана обладает сложным и разнообразным рельефом: здесь есть равнины, котловины, плато, возвышенности, хребты высотой до 2 км.
Мантия
К литосфере относится только верхний слой мантии. Он имеет толщину от 70 до 300 км. Какие явления происходят в этом слое? Здесь зарождаются очаги сейсмической активности – землетрясения. Это связано с повышением здесь скорости сейсмических волн. Каково строение этого слоя? Образована она в основном железом, магнием, кальцием, кислородом.
Что мы узнали?
Литосфера Земли имеет послойное строение. Она образована земной корой и верхним слоем мантии. Между этими слоями находится граница, называемая поверхностью Мохоровичича. Общая толщина литосферы достигает 200 км. В ее состав входят практически все металлы и микроэлементы.
-
Вопрос 1 из 5
Начать тест(новая вкладка)
Литосферные плиты и их движение. Океаническая и континентальная кора Земли
Взаимодействие плит также приводит к формированию двух различных типов земной коры — океанической и континентальной. Поскольку в океанах, как правило, находятся стыки различных литосферных плит, их кора постоянно изменяется — разламывается или поглощается другими плитами. На месте разломов возникает непосредственный контакт с мантией, откуда поднимается раскаленная магма. Остывая под воздействием воды, она создает тонкий слой из базальтов — основной вулканической породы. Таким образом, океаническая кора полностью обновляется раз в 100 миллионов лет — самые старые участки, которые находятся в Тихом океане, достигают максимального возраста в 156–160 млн лет.
Важно! Океаническая кора — это не вся та земная кора, что находится под водой, а лишь ее молодые участки на стыке материков. Часть континентальной коры находится под водой, в зоне стабильных литосферных плит
Возраст океанической коры (красный соответствует молодой коре, синий — старой).
Кора Земли разделена разломами на литосферные плиты, представляющие собой огромные цельные блоки, достигающие верхних слоев мантии. Они являются крупными стабильными частями земной коры и находятся в непрерывном движении, скользя по поверхности Земли. Литосферные плиты состоят либо из материковой, либо из океанической коры, а в некоторых континентальный массив сочетается с океаническим. Выделяют 7 наиболее крупных литосферных плит, которые занимают 90% поверхности нашей планеты: Антарктическая, Евразийская, Африканская, Тихоокеанская, Индо-Австралийская, Южноамериканская, Североамериканская. Кроме них существуют десятки плит средних размеров и много мелких. Между средними и крупными плитами находятся пояса в виде мозаик из мелких плит коры.
Теория тектоники литосферных плит
Теория литосферных плит изучает их движение и процессы, связанные с этим движением. Данная теория гласит о том, что причиной глобальных тектонических изменений является горизонтальное перемещение блоков литосферы — плит. Тектоника литосферных плит рассматривает взаимодействие и движение блоков земной коры.
Теория Вагнера
О том, что литосферные плиты горизонтально перемещаются, впервые высказал предположение в 1920-х годах Альфред Вагнер. Он выдвинул гипотезу о «дрейфе континентов», но она в то время не была признана достоверной. Позже, в 1960-х годах, проводились исследования океанического дна, в результате которых подтвердились догадки Вагнера о горизонтальном движении плит, а также выявлено наличие процессов расширения океанов, причиной которых является формирование океанической коры (спрединг). Основные положения теории в 1967-68 годах сформулировали американские геофизики Дж. Айзекс, К. Ле Пишон, Л. Сайкс, Дж. Оливер, У. Дж. Морган. Согласно этой теории границы плит находятся в зонах тектонической, сейсмической и вулканической активности. Границы бывают дивергентными, трансформными и конвергентными.
Движение литосферных плит
Литосферные плиты приходят в движение вследствие перемещения вещества, находящегося в верхней мантии. В зонах рифтов это вещество прорывает кору, расталкивая плиты. Большая часть рифтов располагается на океаническом дне, так как там земная кора гораздо тоньше. Наиболее крупные рифты, которые существуют на суше, находятся возле озера Байкал и Великих Африканских озер. Движение литосферных плит происходит со скоростью 1-6 см за год. Когда они между собой сталкиваются, на их границах возникают горные системы при наличии материковой коры, а в случае, когда одна из плит имеет кору океанического происхождения, образуются глубоководные желоба.
Основные положения тектоники плит сводятся к нескольким пунктам
- В верхней каменной части Земли существуют две оболочки, которые значительно отличаются по геологическим характеристикам. Этими оболочками являются жесткая и хрупкая литосфера и находящаяся под ней подвижная астеносфера. Подошва литосферы представляет собой раскаленную изотерму температурой 1300°С.
- Литосфера состоит из непрерывно движущихся по поверхности астеносферы плит земной коры.
Литосферные плиты Земли представляют собой огромные глыбы. Их фундамент образован сильно смятыми в складки гранитными метаморфизированными магматическими породами. Названия литосферных плит будут приведены в статье ниже. Сверху они прикрыты трех-четырехкилометровым «чехлом». Он сформирован из осадочных пород. Платформа имеет рельеф, состоящий из отдельных горных хребтов и обширных равнин. Далее будет рассмотрена теория движения литосферных плит.